New Algorithms for Learning Incoherent and Overcomplete Dictionaries
Rong Ge, Microsoft Research

In sparse recovery we are given a matrix $A \in \mathbb{R}^{n \times m}$ ("the dictionary") and a vector of the form AX where X is sparse, and the goal is to recover X. This is a central notion in signal processing, statistics and machine learning. But in applications such as sparse coding, edge detection, compression and super resolution, the dictionary A is unknown and has to be learned from random examples of the form $Y = AX$ where X is drawn from an appropriate distribution — this is the dictionary learning problem. In most settings, A is overcomplete: it has more columns than rows.

A popular algorithm (K-SVD) for dictionary learning uses top singular vectors in alternating minimization. However, no provable guarantee was known until recently. In this talk we show there is a simple algorithm for dictionary learning with provable guarantees. Moreover, K-SVD converges even when the current guess for the dictionary is only slightly correlated with the true dictionary.